Batlab Python Script Quick Start Guide

Introduction
Hardware Limits

Basic Device Overview
Device Connections
Cell Channel LED Blink Patterns

Python Utility Script Prerequisites
Downloading Python 3
Downloading and Installing the Batlab Python Package
Downloading Default ‘Test Settings’ Template
Download the Programmer User's Manual

Python Utility Script Execution

Python Utility Script Usage Example
Step 1: Connect Batlab
Step 2: Load Test Settings
Step 3: Initiate A Test

—_—

A © ©O O N N oo o a A W W N N

Introduction

The Lexcelon Batlab Python library has been designed for hobbyists and more advanced users
who would like to incorporate the Batlab hardware into their own cell testing workflow and/or
environment. It is not an expectation for users to have to create their own intricate scripts to
accomplish tasks with the Batlab unit; when the full GUI is ready for release, the low level
communication with Batlab memory registers will be accomplished ‘behind-the-scenes.’ In the
meantime, the Lexcelon software team has created a Python utility script that not only acts as
an example of what can be accomplished with the Batlab Python library, but also as a means for
our Kickstarter backers to communicate with the Batlab unit prior to the release of the GUI.

It is important to note that the command-line environment is not as polished as the GUI planned
for release in the new future. Its promotion now as an alternative stems from our understanding
that Kickstarter backers who have waited patiently are anxious to start using their units. We
believe this Quick Start Guide can make that happen!

Hardware Limits

It is important for users to be knowledgeable of Batlab hardware limits prior to usage. The
Batlab has been designed to be resilient to common failure modes that have been anticipated
as having a chance of occurrence during typical device usage. However, it is important for users
to acquaint themselves with functional limitations to ensure that the Batlab unit is being
operated within its rated tolerances. Though the device has a great range of functionality, there
are still limitations that must be considered:

The maximum current capable of being measured is 4.096A.

The maximum current synthesis is 4A.

Thermal dissipation limits impose a 4A per channel max threshold

o NOTE: The maximum current dissipation the device can handle may differ from

the technical specification limits of the cells being tested; users should review
their cell data sheets to ensure that constructed tests do not breach the rated cell
threshold.

The maximum voltage capable of being measured is 4.5V.

Charging operations of the device are designed for 4.75 - 5.20V from the external power

supply.

e Batlab communication with the PC is designed for USB 4.95 - 5.05V (powered USB hub
is recommended for usage cases with more than one Batlab).

Basic Device Overview

The Lexcelon Batlab v1.0 is designed to collect voltage, current, temperature, and impedance
measurements of up to 4 Lithium-ion cells simultaneously. The device is controlled by register
transactions that are initiated by test commands passed to the Batlab through a USB connection
from a host PC. The charging and discharging of cells can be controlled at constant rates or by
using sinusoidal charge or discharge waveforms. Measurements are continuously taken by the
device, and if a safety limit is reached, all current flow is stopped.

Device Connections

The external Batlab connections are shown in the markup below:

BLUE: These are external headers that may be used to connect the Batlab to a non-18650 cell
slot tray. The red dip-switches must all be flipped to the off (downward) position to use the
external headers instead of the 18650 form factor sized tray that is soldered to the Batlab.

RED: This port is for the external 5V power supply. Note that all charge and discharge
functionalities require the 5V power supply to be connected.

GREEN: This port is for the communications protocol connection to the USB computer. The port
is of Mini-B USB factor.

Cell Channel LED Blink Patterns

A state machine internal to the Batlab firmware documents the MODE of each cell channel. An
LED next to each cell channel of the cell tray is used to communicate information to the user
about the instantaneous MODE of the cell by blinking in a different pattern for each MODE. A
summary of the MODE LED blink patterns is provided in the table below:

Mode LED Blink Pattern
NO CELL Off

IDLE Blip
BACKWARDS Fast Blink
CHARGE Ramp Up
DISCHARGE Ramp Down
IMPEDANCE Sinusoid
STOPPED Solid On

A diagram of typical mode transitions is shown below. More information about the MODE and
transitions can be obtained from reading the Programmer User's Manual (PUM), which is
available on the Resources tab of our website: https://www.lexcelon.com/resources/

Mode State Machine Diagram

NO CELL

No Current,
Errors Clear

IDLE BACKWARDS
No Current, No Current,
Errors Clear Errors Clear

CHARGE OR DISCHARGE OR IMPEDANCE
Current Flows Current Flows Current Flows

STOPPED
No Current,
Errors Latch

https://www.lexcelon.com/resources/

Python Utility Script Prerequisites

There are a couple prerequisites for using the Batlab utility script. We will address them here.

Downloading Python 3

The main prerequisite for using the script is installing the Python programming language to your
computer. The Batlab Python library is, at the moment, only compatible with Python 3. This
means that you will need to ensure that the correct version of Python is installed before
attempting to use the Batlab script. Python is free to download from the Python website:

https://www.python.org/downloads/

Download the latest version for Windows

|
' Download Python 3.6.3 Download Python 2.7.14

When stepping through the installation process for Python 3, be sure to have the ‘pip’ Optional
Feature checked. This will simplify installing the Batlab package in the next prerequisite.

Optional Features

Documentation

Installs the Python documentation file.
pip
Installs pip. which can download and install other Python packages.

Downloading and Installing the Batlab Python Package

The Batlab library and accompanying utility script are compiled into a Python package that can
be acquired and installed using a simple ‘pip install’ command in a Command Prompt window.
Once Python 3 is installed, open a Command Prompt window and execute the following
command:

py -3 -m pip install batlab

\site-packages (from batlab)

https://www.python.org/downloads/

The ‘pip’ command will install the batlab package and another package called ‘pyserial’ that is
leveraged within the utility script to manage the serial communication ports. Once both of these
are installed, you will be able to execute the utility script from any directory on your machine by
typing the following command in the Command Window:

batlabutil

NOTE: When you call the script using the command above, you will then enter into the
command-line environment to communicate with your Batlab unit. Any measurement files that
will be produced in the session will be saved in the directory in which you executed the script
command. Additionally, the utility commands dependent on file inputs will search for the files
within the directory in which you executed the script command. For this reason, we recommend
creating a Batlab specific folder in which you may store your measurement and ‘Test Settings’
files. The ‘Test Settings’ file will be discussed in the next section.

It should also be noted that the Batlab Python package can be updated to the latest revision
using the following command:

py -3 -m pip install batlab -U

Downloading Default ‘Test Settings’ Template

When executing tests in the utility environment, one of the inputs is a ‘Test Settings’ file that
stores user-provided test constraints. Test Settings are in the JSON file format and follow a
particular structure that will be discussed in the Python Utility Script Usage Example section of
this document. In the future, the Test Settings will be generated as part of user interaction with
the software GUI. At this point, the Test Settings must be constructed manually. To assist this
process, a Test Settings template is available from our Resources page:

Source Code

Batlab Python Library

Batlab Toolkit GUI

Batlab Measurement Processor Firmware
Batlab Communications Processor Firmware

Test Settings JSON Template

Download the template and place it into a folder of your choosing. We recommend creating a
Test Settings folder from which you will always execute the Batlab utility script (this ensures that
the measurement output files are stored in a reasonable location on your system and that the
Test Settings will be within the same directory that you are operating the command-line
interface within).

NOTE: It is extremely important reference the table of minimum and maximum values that is
provided in the Script Usage Example section of this document before changing any of the
template values. The utility script does not force the parameters to be within the specified
ranges, so it is up to the user to ensure that operation is within the limits.

Download the Programmer User’s Manual

One recommendation prior to proceeding to actual script usage is to have a copy of the
Programmer User’s Manual (PUM) on hand. The manual is available from our resources page:

https://www.lexcelon.com/resources/

This manual documents not only the communications protocol used by the Batlab, but also
tabulates a summary of all registers available for read and/or write. See section 4.2.2.4 of the
manual for information on the registers.

Python Utility Script Execution

To execute the ‘batlabutil.py’ utility script, you simply run the ‘batlabuti’ command from a
Command Window. However, we recommend that you execute the utility script from the location
on your system that houses any Test Settings files that you may want to load during your usage
session.

D:\Software\Lexcelon\Python Comm\batlab-software-python-masteribatlab»batlabutil

The first output of the utility script is a list of commands available to you, their syntax, and a
description of their function. If you need to reference this list later on deep into a session and do
not want to scroll up, simply type ‘help’.

https://www.lexcelon.com/resources/

[names
[ﬂamesp
example: '
info
measure

ShNs of connect
ctive batlab. Or read
hﬁlp

hhﬂ register and namespa

Commands

cellname]

[cellname] (timec '«hh hst uﬁ

tings filename] i gs from
e

L=}
+

test
luaded
.Jjson file
display current test settings
General Purpose Command for Writing
i General purpose Command for Reading
ead UNIT FI RMWARE_VER'
return unit names pach 1n+urma“1un
return -
easurment
on cell,
on cell, up io
on cell,
all cells stop moc
all cells to IDLE mode, or HHl 1 cell
oad firmware update from local bin file
che k for firmware update. Load if needed
check for firmware update.

The bracketed arguments next to the function call are arguments that are required for the
command to work. The arguments that are in parenthesis are optional. The descriptions note
what the optional inputs do. A list of constants that can be used in place of hexadecimal values
for the [namespace] and [address] inputs is provided by typing ‘constants’.

CELL®, CELL1

MODE, ERROR

TEMPERATUR
TAGE_LIN

CELL3, UNIT, BOOTLOADER,

FIRMEWARE_ ”tF ".-l_l_1

PSU,

LED3, PSU_VOLTAGE

For more information on the namespace and address architecture, you can reference the
Programmer User’'s Manual.

NOTE: While the utility script technically grants the ability to write to specific registers, we do not
recommend or intend for users to do so unless they are working on the development of their
own advanced scripts. If you are a user that plans to do this, please read the PUM in its entirety
to develop a full understanding of the communications architecture.

Python Utility Script Usage Example

This section documents how to set-up a simple cycletest using the Batlab utility script.

Step 1: Connect Batlab

Before using the script to perform meaningful actions, one must first connect a Batlab unit to the
host computer. When this is complete, you may type ‘list’ to confirm that the Batlab is
connected. The script output will indicate which COM ID the unit has been assigned alongside
its Serial Number and the current MODE of each cell channel.

Channel
Channel
Channel

Step 2: Load Test Settings

All Test Settings are to be stored in JSON file format. In the future, you will be able to generate
test setting files through the GUI. In the short-term, this process must be done manually.
However, a ‘default. JSON’ file exists in the ‘batlab’ folder of the folder and may be leveraged as
a starting point to create your own Test Settings files. An example of a Test Setting file layout is
shown below. | have modified default.json to produce my own settings file BatlabDemo.json.

2 "acceptableImpedanceThreshold™: 0.2,

"batlabToolkitGUIVersion™: "0.0.1",

1 B "cellNames™: [
g "Demo-Cell 00017,
& "Demo—-Cell 00027,
T "Demo-Cell 0003™,

"Demo-Cell 0004"

b] ¥

10 "cellPlaylistName™: "BatlabDemoPlaylist™,
11 "chargeCurrentSafetyCutoff™:

12 "chargeRate™: 1.5;

13 "chargeTemperatureCutoff™: F
14 "dischargeCurrentSafetyCutoff"™:
15 "dischargeRate™: 2,

1&g "dischargeTemperatureCutoff™: B
ik "highVoltageCutoff™: 4.2,

14 "impedanceReportingPeriocd™: 300,
15 "lowWoltageCutoff™: 3.5,

20 "numMeasurementCycles™:

21 "numWarmaplCycles™:

22 "reportingPeriocd™:

ikt "restPeriod™: 30,

24 "sincWaveFrequency™: 395.0&825,

Z5 "gsineWaveMagnitude™:

26 "storageDischarge™: true,

- "storageDischargeVoltage™:

The “cellNames” variable is an array of the cell names and should have unique identifiers for
each cell you are planning to test. In the example above, you can note that there are four
separate elements of the “cellNames” array, which means that | plan to test four cells with these
settings. The names provided as elements will be used in the output measurement file as the
test is running.

The “cellPlaylistName” string value “BatlabDemoPlaylist” will be used in the measurement file
name. The “batlabToolkitGUIVersion” will be output to the measurement file as a comment
indicating what version of the GUI was used to generate the Test Settings file. You do not need
to be concerned about changing the “batlabToolKitGUIVersion” parameter. The rest of the
parameters correspond to specific test values and/or thresholds. In the future, the GUI will
constrain these values. For now, you must be mindful of the expected minimum and maximum
values assigned to them. The table below summarizes the parameters. Any values outside the
minimum and maximum range could result in hazardous operational conditions.

BATLAB TEST SETTING FILE PARAMETERS

Parameter Description Units Min Max
Valu | Value
e
“acceptancelmpedanceThreshold” | To be used in the future as a means of Ohms | 0.02 200
determining which cells do not meet
user’s standards.
“patlabToolkitGUIVersion” GUI Version used to generate the test N/A N/A N/A
measurements.
“cellNames” Array of cell names. N/A N/A N/A
“cellPlaylistNames” Name of the ‘test playlist’ that will be N/A N/A N/A
used in the output measurement file
name to denote the testing session.
Meaningful name suggestion could be
the name of project.
“chargeCurrentSafetyCutoff” Cell channel exceedance of this current Amps 0.25 4.096
threshold during ‘charge’ will stop the test
in that channel.
“chargeRate” Current setpoint target while ‘charging.’ Amps 0.25 4.096
“chargeTemperatureCutoff’ Cell channel exceedance of this DegC | -inf inf
temperature threshold during ‘charge’ will
stop the test in that channel.
“dischargeCurrentSafetyCutoff” Cell channel exceedance of this current Amps 0.25 4.096
threshold during ‘discharge’ will stop the
test in that channel.
“dischargeRate” Current setpoint target while Amps 0.25 4.096
‘discharging.’
“dischargeTemperatureCutoff” Cell channel exceedance of this DegC |25 80
temperature threshold during ‘discharge’
will stop the test in that channel.
“highVoltageCutoff” Target voltage while charging. Signifies Volts 3 4.4
end of the ‘charge’ phase of cycle.
“impedanceReportingPeriod” The time between periodic impedance Sec 10 3600

measurements that occur while tests are
running.

“lowVoltageCutoff” Target voltage while discharging. Volts 2 3.6
Signifies end of the ‘discharge’ phase of

cycle.

“numMeasurementCycles” The number of cycles to be performed Cycles [0 10000
during the test with recorded
measurement.

“numWarmpupCycles” The number of non-measurement cycles | Cycles |0 100

to be performed before the actual
measurement cycles begin.

“reportingPeriod” The time between measurement samples | Sec 0.5 3600
for each cell channel.

“restPeriod” The time between completion of cycle Sec 0 3600
phase and beginning the next phase.

“sineWaveFrequency” Discrete frequency selection of the sine Hz 39.06 | 1054.
wave for impedance measurement. Only 25 6875
change value to multiple of 39.025.

“sineWaveMagnitude” Discrete selection of peak-to-peak sine App 0 4
wave magnitude. Only change value to 0
for 2App, 1 for 1App, 2 for 0.5App, or 3
for 0.25App.

“storageDischarge” Boolean to signify whether a ‘storage N/A N/A N/A
discharge’ phase should occur after the
completion of test. This permits users to
discharge voltage to known state once
testing is completed.

“storageDischargeVoltage” The storage voltage value to which cells | Volts 2 44
should be discharged during the ‘storage
discharge’ phase (if applicable).

When setting up a test, the first step is to load the safety parameters that will be used for the
test. It is important to note that the Test Setting .json file must be in the same directory as the
batlabutil script. Assuming that the BatlabDemo.json exists in the same directory as batlabutil,
the settings load would be accomplished using the following command:

»»»load settings BatlabDemo

NOTE: The user MUST use the ‘load settings [settings flename]’ command for loading test
parameter settings. This ensures that cells being tested as part of a test ‘playlist’ all use the
same test settings. In most applications, cells MUST be tested with the same parameters for
their results to be comparable in a meaningful way.

After this command, the utility will output the setting values so that you can visually confirm them
to be correct for your intended test.

m
o P

;45
4.

L
LA

o =

U pCy e
reportingpP
od

reFreguency

R w

Mo L e

=

estResults/ batlab-log BatlabDemoPlaylist.cswv

When you load a Test Setting file, it sets the global settings object to have the settings specified
in the file. When you start a test on any cell, the cell channel object makes a copy of whatever
the global settings object is at the time, and then uses those settings in the test. This means that
a loaded Test Settings file will override the setpoints of each cell when you use an Active Test
Command.

Loading a Test Setting file will also initiate the creation of a .csv file that leverages the
“cellPlaylistName” parameter in its title. From the image above you will note that the name of the
file is ‘batlab-log_BatlabDemoPlaylist.csv’. If we were to open this .csv file, we would first see a
comment that is a mirror copy of the Test Settings file that we just loaded into the Batlab.

"racceptableImpedanceThreshold™": 0.2,
""hatlabToolkitGUIVersion™ : ""0.0.1"",
4 ""cellNames™™: |

5 ""Demo—-Cell 0001™",

z ""Demo—-Cell 00027,

7 ""Demo—Cell 00037,

i "MDemo—-Cell 0004™™

: 1.
10 ""eellPlaylistHame™ : ""My Playlist™™,

11 "mochargeCurrentSafetyCutoff™™: 4,
12 ""chargeRate™: 1.5,

13 ""chargeTemperatureCutoff™": 45,

14 "r"dischargeCurrentSafetyCuctoff™™: 4,
15 ""dischargeRate™": 2,

1& "rdischargeTemperatureCutoff™™: 45,
17 ""highVoltageCuctoff™™: 4.2,

18 ""impedanceReportingPeriod™™: 300,
15 ""lowWVoltageCutofEf™": 3.5,

20 "rnumMeasurementCycles™™: 1,

21 TronumNarmupCycles™™: 0,

22 "TreportingPeriod™™: 1,

23 ""restPeriod™™: 30,

=4 "TzineWaveFrequency™ : 39.0625,

25 "raincWaveMagnitude™™: 0,

26 "rgrorageDischarge™™: true,

27 ""zstorageDischargeVoltage™™: 3.7

i m
e F o rrererrerrrrveeerer

Step 3: Initiate A Test

Assuming that our Batlab has 5V external power connected (the EXT-PWR LED shows solid
green), we can now initiate a test. When you initiate a test, it is very important to use the same
cell names in the argument that were defined in the Test Settings file. This is due to the fact that
the measurement file uses the name provided in the argument in each row of recorded data for
that cell channel. If you do not use a name that aligns with your Test Setting file names, you will
potentially forget which cell you were testing. We recommended labeling cells ahead of time so
that there will be no confusion. For example, if | have a cell that | have physically labeled
Demo-Cell_0001, populated into the CELLO slot, and plan to test with the loaded
BatlabDemo.json Test Settings, | would now simply type:

etest CELLG Demc-Cell 8881

The Batlab fan will immediately kick on to cool the unit as the test is being conducted. The fan
also runs for 1 minute following the completion of any test to return the Batlab to its base
temperature. While the test is running, the .csv file shown in the previous image will be
appended with measurements taken for CELLO channel of the Batlab.

Cell Name,Batlab SN,Channel,Timestamp (8),Voltage (V),Current (A),Temperature (C),

Impedance (Ohm),Energy (J),Charge (Coulombs),Test Stat
Demo-Cell 0001 »0,2017-10-29 20:25:13.172416,3.5434,1.6168,22.4133,,8.699 &

065, PREC

Demo-Cell 0001, ,0,2017-10- 3.9451,1 5,4.1831, PRECHARG
Demo-Cell 0001 ,0,2017-10- 3.84589,1 ,6.1446, PRECHARGE, ,,,,,,
Demo-Cell_ 0001, »0,2017-10- 3.58455,1 +8.0818, PRECHRRGE, ; ;44 ¢ s
Demo-Cell 0001, »0,2017-10- 3 1.

Demo-Cell 0001 ,0,2017-10- 7.3 1.56

Demo-Cell 0001 »0,2017-10- 6,3 ab

Demo-Cell 0001 ,0,2017-10- 3 i

Demo-Cell 0001, »0,2017-10- 3 .

Demo-Cell 0001, »0,2017-10-29 20: 3.9467,1

A header at the top of the file lists the column values and their respective units. If a test were
running simultaneously on Demo-Cell_0002, then the rows might alternate or stagger between
Demo-Cell_0001 and Demo-Cell_0002 data. If you want to stop a test midway through the test,
you would simply type:

»»>»stop CELLE

The CELLO MODE would then transition to MODE_STOPPED and the test would complete:

m e

ab 196618 , Channel @

V 6.0086 A T1. 1.1287 Coulombs MODE IDLE ERR_NOME

